

Year 11 Mathematics Specialist Test 3 2016

Calculator Assumed

Geometric proofs, vector proofs, relative motion

STUDENT'S NAME		
DATE:	TIME: 50 minutes	MARKS : 50
INSTRUCTIONS: Standard Items: Special Items:	Pens, pencils, ruler, eraser. Three calculators, drawing instruments, notes on one side of a single notes to be handed in with this assessment)	e A4 page (these
Questions or parts of q	uestions worth more than 2 marks require working to be shown to rec	eive full marks.

1. (4 marks)

Ship A is sailing north-east at 15 km per hour. To an observer on ship A, ship B appears to be moving east at 7 km per hour. Calculate the actual magnitude and direction of ship B.

2. (4 marks)

Given
$${}_{A}\textbf{\textit{r}}_{B}=\begin{pmatrix}2\\10\end{pmatrix}$$
, ${}_{B}\textbf{\textit{r}}_{C}=\begin{pmatrix}-11\\9\end{pmatrix}$ and $\textbf{\textit{r}}_{C}=\begin{pmatrix}8\\2\end{pmatrix}$. Determine $\textbf{\textit{r}}_{A}$

$${\binom{2}{10}} = {\binom{2}{10}} - {\binom{1}{10}} = {\binom{1}{10}} - {\binom{1}{10}} = {\binom{1}{10}} - {\binom{1}{10}} = {\binom{1}{10}} - {\binom{1}{10}} = {\binom{$$

3. (3 marks)

Given that $\overrightarrow{BD} = 2\overrightarrow{DC}$, show that $\mathbf{b} + 2\mathbf{c} = 3\mathbf{d}$.

4. (A marks)

The diagram shows a circle with centre O. Given that $\angle CAO = 18^{\circ}$ and $\angle CBO = 18^{\circ}$. Determine the size of $\angle AOB$.

5. (4 marks)

In the diagram below PT is a tangent at T. TB = TA and \angle DCA = 80° . Determine the size of \angle PTA.

6. (7 marks)

 $\overrightarrow{OA} = \mathbf{a}$ and $\overrightarrow{OB} = \mathbf{b}$. E is the point on OA such that OE : EA = 1 : 2. F is the point such that $\overrightarrow{BF} = 2\mathbf{b}$.

(a) Express in terms of \underbrace{a}_{\sim} and \underbrace{b}_{\sim} , \overrightarrow{OE} , \overrightarrow{EB} , \overrightarrow{OF} and \overrightarrow{AF} .

[4]

(b) Show that EB is parallel to AF.

[2]

(c) Determine the ratio of the lengths EB : AF

[1]

1:3

7. (4 marks)

The circle in the diagram touches the triangle ABC at P, Q and R. $\angle BRP \neq 61^{\circ}$, $\angle RPQ = 54^{\circ}$ and $\angle PRQ = 65^{\circ}$ Determine the size of $\angle ACB$.

8. (4 marks)

The diameter AOB of the circle below is produced to meet the tangent CD at D. Given that $\angle ADC = 36^{\circ}$. Calculate the size of $\angle DAC$.

8. (9 marks)

Triangle ABC is inscribed in a circle with AB as a diameter. The tangent at C meets AB produced at D, the point E is on the line BD such that BE = BC. Given that $\angle DCE = x^{\circ}$ and $\angle BCE = y^{\circ}$.

Calculate, in terms of *x* and *y* only, the angles CEB, CBA and CAB. (a)

$$LCEB = y'$$
 (Isoscales Δ)

 $LCBA = 180' - LCBE$
 $= 180' - (180 - 2y) = 2y'$
 $LCAB = 90 - 2y'$ (since $LACB = 90$ (ayles is a Δ)

Write an equation for y in terms of x. (b)

(c) If the length of DC = 7 cm and the radius of the circle is 2 cm, show that DB (z) is given by $z^2 + 4z - 49 = 0$. [3]

$$DB = 2$$
 is $D = 0$ $DCD = 10$ (tagget) V

$$2^{2} + 42 + 4 = 4 + 49$$

$$2^{2} + 42 - 49 = 0$$

[3]

9. (7 marks)

In the given diagram, two unequal circles, centres A and B, intersect at P and Q. The line BP produced meets the circle whose centre is A, at the point R

(a) If
$$\angle RPQ = x^{\circ}$$
, prove that $\angle PBQ = (2x - 180)^{\circ}$

If
$$\angle RPQ = x^{\circ}$$
, prove that $\angle PBQ = (2x - 180)^{\circ}$
 $\angle BPQ = 180^{\circ} - x^{\circ}$ (anyles on st line)

 $\angle PBQ = 180 - 2(180 - x)$ [180 - x] [190 - x] [190 - x]

 $= 180 - 360 + 2x^{\circ}$
 $= (2x - 180)^{\circ}$

[3] LRAQ (reflex) = 2x [angle at centre = 2x angle at ore] · LRACY (obtrace) = (360-2x) now 360-2/2 + 2x-180 (& LRAQ+LPBQ)